
K A R P ’ S B A C K E N D
språkbanken

göteborgs universitet

contents
1 About karp 2

2 Input format 2

3 Prerequisites 3

4 Downloading the code 4

5 Configurations 4

6 Inputting the data to the system 9

6.1 Loading data . 10

6.2 Adding more lexicons . 10

7 Reloading the data 10

8 Outputting the data from the system 11

9 Testing the backend 11

10 Checking that ElasticSearch is healthy 13

11 Fresh restart 13

1

about karp 2

1 about karp
Karp is Språkbanken’s lexical infrastructure which is used for publishing and editing
lexical resources. Karp’s backend allows you to make your lexicons searchable and
editable. The lexicons must be in json format, but it is possible to have for example
xml blocks in the json objects, which can still be made searchable.

There are two main types of searches available, simple (free text search) and ex-
tended (field search). In the free text search, the content of a predefined set of fields
is used, as defined when you set the configuration files. In the extended search, the
user can choose which specific fields to search, eg. baseform or part of speech. Which
fields are searchable and how the text in them is analyzed is also defined during the
configuration.

The backend is a WSGI application written in Python. The main components of the
system are ElasticSearch and SQL. ElasticSearch (ES) provides fast searching and an
easy way of indexing and analyzing your data. The SQL database is used only as a
back-up and for keeping the revision history of edited resources.

The code base for Karp’s backend contains one example resource, the Bilingual Glos-
sary German-English with Probabilities (PANACEA) created by Linguatec GmbH,
which can be used for testing your Karp installation.

2 input format
Each lexical entry must be represented as one json object, and contain the name of
the lexicon ("lexiconName"). It should also contain the order of the lexicons ("lexi-
conOrder"), which regulates in which order the search results are shown1. This should
be an integer, starting from 0. A lexicon is a list of objects. A simple example:

[{’lexiconName’: ’saldo’, ’lexiconOrder’: 0, ’baseform’: ’katt’, ’partOfSpeech’: ’nn’,

’xml’: ’<definition>Some dumped data</definition>’},

{’lexiconName’: ’saldo’, ’lexiconOrder’: 0, ’baseform’: ’hund’, ’partOfSpeech’: ’nn’},

{’lexiconName’: ’lexin’, ’lexiconOrder’: 1, ’baseform’: ’hund’,

’partOfSpeech’: [’nn’,’vb’], ’lexinID’: ’lx500’}

]

The entries may of course have a much more complex structure, and contain lists,
other objects etc. ES will allow the type of a field to vary between lists and single
objects, but not between other any two types. The above example is thus ok, even
though ‘partOfSpeech’ varies in type, but the below is not:

[{’lexiconName’: ’saldo’, ’lexiconOrder’: 0, ’baseform’: ’katt’, ’partOfSpeech’: ’nn’},

{’lexiconName’: ’lexin’, ’lexiconOrder’: 1, ’baseform’: ’hund’,

’partOfSpeech’: {’swe’: ’nn’, ’eng’: ’vb’}}

]

Your work will be simplified if all entries are similarly structured, but it is not
required.

1 A standard use case of the Karp backend is to group all search results by lexicon. This also corresponds
to the set-up in the frontend. You will also have to specify the order of your lexicons later in the
configuration part.

prerequisites 3

3 prerequisites
To run the Karp backend, you will need to install a number of other packages. If
you are running Karp for test and development, you can get an easy start by using
Docker2. If so, skip this section and continue at section 4.

• ElasticSearch
Download version 1

https://www.elastic.co/downloads/past-releases/elasticsearch-1-5-2

Install as described here https://www.elastic.co/downloads/elasticsearch

The only configuration needed is to set cluster.name in
config/elasticsearch.yml to a desired name3

• Virtual Env
For the python libraries. Install with:
pip install virtualenv

http://docs.python-guide.org/en/latest/dev/virtualenvs/

• SQL
(preferrably MySQL (or MariaDB))
https://www.mysql.com/ https://mariadb.org/

• a WSGI server
for example mod_wsgi with Apache, Waitress, Gunicorn, uWSGI. . .

• Authserver (if you plan to use Karp’s editor)
At Språkbanken, we use
https://svn.spraakbanken.gu.se/repos/cjs/pub/wsauth/

This requires Drupal 7 together with the module Email Registration
https://www.drupal.org/

https://www.drupal.org/project/email_registration

It is also possible to use a server of your choice, as long as it returns a json object
containing at least:
{’authenticated’: true/false

,’permitted_resources’ : {’lexica’ : [...lexiconnames...]}}

• Python2 >= 2.7 with pip.
https://www.python.org/downloads/

http://pip.readthedocs.org/en/stable/installing/

2 https://www.docker.com/
3 This is important if you want more than one node in your cluster (see https://www.elastic.co/guide/

en/elasticsearch/reference/1.4/_basic_concepts.html). Språkbanken currently uses three nodes
running on three different servers.

https://www.elastic.co/downloads/past-releases/elasticsearch-1-5-2
https://www.elastic.co/downloads/elasticsearch
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://www.mysql.com/
https://mariadb.org/
https://svn.spraakbanken.gu.se/repos/cjs/pub/wsauth/
https://www.drupal.org/
https://www.drupal.org/project/email_registration
https://www.python.org/downloads/
http://pip.readthedocs.org/en/stable/installing/
https://www.docker.com/
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_basic_concepts.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_basic_concepts.html

downloading the code 4

4 downloading the code

Using Docker

If you want to set up a test and development instance of Karp for local use, download
the code from
git clone http://spraakbanken.gu.se/pub/karpdocker.git

and follow the instructions in README.md. When doing offline calls (section 6-8) in
this set-up, always prefix the commands with
docker-compose run --rm karp

Normal download

Download the code with git:
git clone http://spraakbanken.gu.se/pub/karp.git

In the next section, you will see what configurations you will have to do to run the
system with your lexicons. There are two versions of Karp, a standard version and an
extended version which targets problems specific to Språkbanken’s own lexicons. The
code specific for Språkbanken is located in sb/. If unsure, use the standard version.

The file backend.py is the main component, run by backend.wsgi. The script
upload_offline.py will help you upload, delete and extract data from the system
as an offline service, only available to the developers. It is run like a normal python
script, you will learn more about this in Section 6-8.

5 configurations
The first thing you have to do is to set up the virtual environment for python (this is
however not needed when running Karp in Docker). Do this by running the following
commands:

cd backend

virtualenv venv

source venv/bin/activate

pip install -r requirements.txt

From now on, whenever you want to run the code from a fresh terminal, you must
reenter the environment: source venv/bin/activate

To deactivate the environment (when done working with the Karp), deactivate it:
deactivate

Next, there are some configurations to do in the files located in the directory called
config. By default all the lexicon-related configuration files are set to handle the
PANACEA lexicon mentioned in Section 1. This was done in order to provide a work-
ing example.

configurations 5

debugmode.py
Set debug to True if you want the server to print more detailed errors and to show a
more detailed error report to the user. Since this means that information that might be
sensitive will be exposed to any user, make sure to inactivate the debug mode before
you release your Karp version. The same goes for the logging level in the last line:
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)

for an exposed version of Karp, you will probably want to set this to
logging.basicConfig(stream=sys.stderr, level=logging.ERROR).
For non-Docker users: Change the file path of debugfile to be the absolute path of
your log file and make sure that this file exists and that the user who will run the
server (eg. the Apache user) has write access to this file. This is crucial, since the
backend will not run if the write access is not ok.

dbconf.py
If you’re using MySQL/MariaDB, all you have to do is to replace karplabb to the
database name that you wish to use.
mysql = ’mysql+pymysql://’+user+’/karplabb?charset=utf8’
admin_emails should be a list with all email addresses to which notifications should

be sent on any SQL error
sender_email should be the email address that the system puts as the sender of its

emails. Emails are sent to administrators on errors but also to users that have submit-
ted suggestions.

dbpassword.py
Create this file, and add the following line
user="name:pass@server"

where name, pass and server corresponds to your SQL login details.

setup.py
Necessary:
script_path: corresponds to SCRIPT_NAME; the initial portion of the request URL’s
"path" that corresponds to the application object. Should, in other words, show the
relative path from the server’s "root" to your application.
sb_extended: unless you want to work with the version specified on Språkbanken’s
lexicons, set this to False
elasticnodes: a list of urls to the ES nodes in your cluster
Optional:
indexalias: ES will store your data in an index, you can chose the name of that here.4

index_internal: should be set to the same as indexalias (not important, unless your
using the extended version)
_type: this is the name of the type used in ES. It can be set to anything.
sugg_index: if you plan to allow suggestions (edits by non logged in users), they need
to be stored in a different index than "normal" entries. Make up a name and put it
here.

4 To be precise, this will be the name of an index alias, rather than index

configurations 6

authconfig.py
Necessary if you want to allow editing. If you’re using the same system as Språk-
banken, fill in the url and the secret string.

lexiconconf.py
conf: a dictionary where the keys are the names of the lexicons. The values are lists
containing the order, and the path to the lexicons. Example:
conf = {’panacea’: [0, ’data/panacea/panacea.json’]}

fieldmappings.py:
In this file you define which fields in your data should be searchable, and map those
to keywords. The keys are names which you will later be able to use in an extended
query to the backend, and should hence match the field names for extended search in
the frontend. For example, if a lexical entry looks like this

{’Form’: {’baseform’: ’...’, ’partOfSpeech’: ’...’, ’example’: ’...’},

’Sense’: { ’example’: ’...’}}

}

and you wish to be able to search for baseform, part of speech and the text in any of
the examples (but you do not make a distinciton between these two) you should add
these lines

mappings = {’baseform’: [’Form.baseform’],

’pos’: [’Form.partOfSpeech’],

’example’: [’Sense.example’,’Form.example’]

}

Mappings can be many-to-many; one key can be linked to many fields and many
keys may refer to the same field. Keep the lines referring to the lexiconName and
lexiconOrder.

While setting up the mapping (see below) you will learn more about how the fields
are indexed.

searchconf.py:
This is where you define how different sorts of searches should be performed. You
will specify which fields (or json paths) of your lexicons are interesting for different
purposes. Before you complete this file, it might be useful to have a look at the
mapping configuration (below).
sort_by : define the order by which your results are sorted. It is recommended to

keep lexiconOrder in the first position, since the Karp frontend assumes this to be
the first sorting criteria. Unless you want to totally ignore the score that the search
engine assigns each hit, also keep _score in this list!
head_sort_field: if you wish to always have a specific primary result order, even

if the user has inputted more fields to search on, you can specify that here. Example:

configurations 7

If the user wants to sort by part of speech, you still want the results to be sorted by
lexiconName in the first place, and after that by part of speech.
minientry_fields: the minientry search is a search type where only the most im-

portant information for each entry is shown. Specify here which fields should be
shown in a minientry search.
statistics_buckets: the statistics query does an aggregation5 of the data; it groups
the data by a chosen set of fields and shows the number in each "bucket". The user
can input what fields he or she wants to use at query time, but the default grouping
should be put here. Example: ["lexiconName", "pos"] will, for each lexicon, show
how many entries there are belonging to each part of speech.
all_fields: specifies which fields should be used for free text search (simple

search). ES will keep a copy of all text from the fields of your choice (you will set
this in the mappingconf.json) in one or more designated fields, usually referred to as
_all. If you don’t know yet what field names you want to put here, simply put
all_fields = ["_all"]

for now.
boosts: this is used for free text search. Apart from searching all fields, ES can boost

the results which contain the query string in one or more specific fields. You might for
example be more interested in results where the baseform matches the query string
than where a comment matches it. Put the fields you consider to be most interesting
here, in order of descending importance. For more control of how the boosting is
done, you will need to modify the source code in server/translator/parser.py

autocomplete_field: Autocompletion will return all entries having fields that con-
tain the requested word. Specify the fields you want to search. This function is called
from Karp’s sister project Korp.

The field names in all settings in searchconf.py should always be - or evaluate to -
the json paths in your lexical entries. You can use the function F.lookup and the keys
from fieldmappings.py:
sort_by = [F.lookup(pos)]

to achieve this, or simply put the whole json path:
sort_by = ["Entry.partOfSpeech"].
Note that the function F.lookup only picks the first path in case of an one-to-many
mapping. If
"pos" : ["Entry.partOfSpeech", "Entry.simplePartOfSpeech",

"Entry.translatedPartOfSpeech"]

then
[F.lookup(pos)] = "Entry.partOfSpeech"

mappingconf.json:
In this mapping you specify how ES should treat your data. You can set tokenizers,
searchable fields etc.6 The default mappingconf.json file contains a simple mapping
for the PANACEA lexicon. A more advanced example of a mapping can be found in
example_mappingconf.json

5 https://www.elastic.co/guide/en/elasticsearch/guide/current/aggregations.html
6 https://www.elastic.co/guide/en/elasticsearch/reference/1.5/mapping.html

https://www.elastic.co/guide/en/elasticsearch/guide/current/aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/mapping.html

configurations 8

Easy set-up: Using the default mapping
It it possible to partly ignore this step for the moment and go on to upload your data.
In that case all text in your data will be searchable and tokenized by a standard euro-
pean tokenizer7. In that case, set the all_fields to ["_all"] in searchconf.py and
rename the file config/simplemappingconf.json to config/mappingconf.json.

Advanced set-up: Creating a custom mapping
If - or when - you want more control of your data, you can edit this file. If this is done
after the data has been uploaded for the first time, however, you will need to reload
it (see section 7) after finishing the new mapping.
Have a look at the file example_mappingconf.json. In the first section, settings, you
can define custom tokenizers, analyzers and filters etc. ES provides a set of built-in
analyzers, and at Språkbanken we have added some more to fit our data:

full_name: using a built-in tokenizer to split at whitespaces only
xml_analyzer: for xml-blocks. Makes the text, but not the mark-up, searchable.

The default analyzer in ES will split words on special characters (-,_,.,". . .). If that’s
not what you want, consider the built-in keyword analyzer treats the whole string
as one token (useful for different types of identifiers, or possibly multiwords expres-
sion that should not be analyzed as separate tokens). The analyzer whitespace splits
only on whitespaces. If you are interested in other alternatives or defining your own
analyzers, please read the ES documentation8.

The section below, mappings, is a definition of your data’s structure.
You can control the _all fields here:
"_all" : {"enabled" : false} prevents ES from making all fields searchable. If you
do want all text to be searchable, put this to true. Note that this will enable free text
searches to match the text in lexiconName and lexiconOrder.
"all_text", "all_xml": These are used instead of _all in Språkbanken’s version.
Each field in the mapping below specifies whether its content should be copied to
one of those. The difference between the two is the analyzers used; text copied to
all_text is tokenized as normal, while the text copied to all_xml is tokenized as
xml. Simply leave out these if you enabled _all above. Finally, remember to update
all_fields in searchconf.py to match your current settings.

The rest of the content is only depending on your data’s type structure. If your
data is simple, just write down the types of it yourself. If it is more complex, you
could let ES do the job for you, by inputting all data to ES and then extracting the
automatically generated mapping. To do this, run one of the commands:
without Docker:
python upload_offline.py --getmapping > config/newmappingconf.json

with Docker:
docker-compose run --rm karp python upload_offline.py --writemapping \

config/newmappingconf.json

7 https://www.elastic.co/guide/en/elasticsearch/reference/1.4/analysis-analyzers.html
8 https://www.elastic.co/guide/en/elasticsearch/reference/1.4/analysis-custom-analyzer.

html

https://www.elastic.co/guide/en/elasticsearch/reference/1.4/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/analysis-custom-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/analysis-custom-analyzer.html

inputting the data to the system 9

This will give you the file newmappingconf.json, which you can use as your mappingconf.py.
Modify the settings mentioned above as needed.

What’s important in the type mapping is to look at the fields copy_to, analyzer,
index and type for each of your data fields. In the below example, we see that "bliss-
Name" is of type "string", and is copied to all_text, meaning that it will be searchable
in free text searches. Since no analyzer is specified, ES will use its standard text an-
alyzer. "category" is also a string, but should be analyzed with our custom analyzer.
"blissID" is not indexed at all, meaning that it will not be searchable, neither in simple
nor extended queries.

"blissName": {

"copy_to" : "all_text",

"type": "string"

},

"category": {

"copy_to" : "all_text",

"type": "string",

"analyzer" : "full_name"

},

"blissID": {

"index" : "no"

}

Note that you do not need to specify whether a field contains a list or a single object.
"blissName" could contain one string, or a list of strings.

Finally, the possibility of using multiple analyzer on a field is worth mentioning.
This is done by adding the special field called fields9. In the example mapping,
you’ll see that FormRepresentations.baseform has an extra line:
"type": "string", "analyzer" : "full_name",
"fields" : {"sortform" : {"type" : "string", "analyzer" : "keyword"}}

By doing this, we can search both FormRepresentations.baseform - where multiword
expressions have been tokenized - and FormRepresentations.baseform.sortform -
where the whole expression is always treated as one inseparable unit. The first option
will allow us to to find "car park" by searching for "park", but will also find "car park"
when we search for words starting with "pa".

Before you reload (section 7) your data, check that the mapping is valid json:
jsonlint config/mappingconf.json

6 inputting the data to the system
Once you have installed and configured the system, you can upload your json docu-
ments to the system. The data will be stored in the search engine ElasticSearch, and

9 https://www.elastic.co/guide/en/elasticsearch/reference/2.0/multi-fields.html

https://www.elastic.co/guide/en/elasticsearch/reference/2.0/multi-fields.html

reloading the data 10

backed-up in SQL. The SQL database will also keep track of the revision history of
each entry, which is useful if you allow your lexicons to be edited. The below com-
mand should only be used the first time lexicons are added. If you use it for reloads,
the previous version of the lexicons will not be properly deleted in the SQL database
and hence be multiplied. This might cause problems later on. For reloads, always
execute the commands in section 7.

6.1 Loading data

To upload data, the first thing you need to do is to come up with a suitable (lower
cased) index name, which should not be the same you put for indexalias in
config/setup.py. A suggestion is to put the current date in the name. If we choose
the index name karp151103, run

python upload_offline.py --create_load karp151103

or, if using Docker:
docker-compose run --rm karp python upload_offline.py --create_load karp151103

This will upload all lexicons listed in config/lexiconconf.py to the databases. If
your interested in the details on why we upload the data to another index than
indexalias specified in the setup, have a look at ES’s index alias functionality10.
The karp backend is using aliases, and the alias karp will be set to mirror the index
karp151103 once the upload is complete. The reason we do this is to avoid downtime
for your users while you are reloading the data.

6.2 Adding more lexicons

If you decide to add more lexicons to your system, first add them to the configu-
rations, as specified above. Also make sure your mapping covers them. To do the
upload, execute the below command, where newlexcionnameN are the names of all
new lexicons, ie. the ones that have not previously been uploaded.

python upload_offline.py --add_lexicon newindex151115 newlexicon1 newlexicon2 ...

All of your lexicons will now be searchable in the new index.

7 reloading the data
At some points, you might need to reload the data to ES. There are two types of
reloads:

A Reload from SQL

B Reload from file

10 https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

outputting the data from the system 11

Use the first one if you for example found errors in your mapping, and want ES to
re-index and re-analyse it. This type of reload will not leave any trace in the revision
history and all changes to the resources done within the system will be kept.

Use the second one if you found errors in your data that you want to fix offline and
then update the databases from new files. This type of reload will delete your revision
history and should hence be avoided after the initial testing phase. As when you load
data the first time, come up with a new index name, for example karp151104. Run
one of the commands:

[A]: python upload_offline.py --publishnew newindex

[B]: python upload_offline.py --reload newindex

Again, prefix the commands above with docker-compose run --rm karp if you are
using Docker.

After you have run any of these commands, the new index will be created and made
available to your users. The old data will still be stored in ES, however. It will not
be searchable by your users, but could be used as a back-up in case you find errors
in the new data and want to "undo" your changes. In some cases, you still want to
delete the old indexes. Do that by running
python upload_offline.py --deleteindex oldindex

or, with Docker:
docker-compose run --rm karp python upload_offline.py --deleteindex oldindex

where oldindex is the index to be deleted. Note that oldindex should never be equal
to the index alias in setup.py!

8 outputting the data from the system
Since Karp allows users to edit the resources, you might sometimes want to extract
these to use for other purposes. If you want to extract the current version of a lexicon,
called lexicon1, and print it to file, use

python upload_offline --printlatestversion lexicon1

| python converter/mklist.py > extracted_lexicon1.json

If you are using Docker, prefix the command with
docker-compose run --rm karp

9 testing the backend
Once you finished the configuration and uploading, you might want to test how
things are working. Below you’ll find some basic examples of how to inspect the
data. In these examples, we are running a test version locally. Start it by running
python backend.py

The web service will now run on localhost:5000. If you are using Docker, or if you
have your WSGI server of choice running and set-up already, you should also be able
to access the Karp backend through that, without running the python script manually.

testing the backend 12

The docker webservice runs on localhost:8081/app.
Errors will be logged to the file debug.txt (or to the docker logs, if you are using
Docker). If you change the code, the WSGI application needs to be reloaded:
touch backend.wsgi

A detailed documentation on the API is available online11.

Aggregation
To start with, you might want to do an aggregation over the data to see some statistics
and make sure everything is there:
curl ’localhost:5000/statistics’

The result looks like this (ES provides you with details that you’re probably not inter-
sted in at the moment. If you are go to the docs12):

{

"_shards": { "failed": 0, "successful": 10, "total": 10 }, // info from ES

"aggregations": {

"lexiconName": {

"buckets": [

{

"doc_count": 131020, // there are 131020 entries in Saldo

"key": "saldo",

"pos": {

"buckets": [

{

"doc_count": 85969, // 85969 of them are nouns

"key": "nn"

},

{

"doc_count": 21839, // 21839 of them are adjectives

"key": "av"

},

...

],

"doc_count_error_upper_bound": 0, "sum_other_doc_count": 0 // info from ES

}

},

"hits": {

"hits": [],

"max_score": 0.0,

"total": 727846 // total number of entries in your data base

},

"timed_out": false, // ES did complete the search without timing out...

"took": 80 // in 80 milliseconds

}

11 https://ws.spraakbanken.gu.se/ws/karp
12 https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_the_search_api.html

https://ws.spraakbanken.gu.se/ws/karp
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_the_search_api.html

checking that elasticsearch is healthy 13

Simple search
If the statistics looked good, you could go on testing a free text search
curl ’localhost:5000/query?q=simple||house’

Check that the results match the query in the fields you added to all_fields in
searchconf.py and that the index specified in each hit is that of the last upload you
did.

Extended search
Now try and see that the configuration in fieldmappings.py works. Try searching
different fields (keys from the fieldmappings).
curl ’localhost:5000/query?q=extended||and|FIELD|equals|house’

Random search
The random search will, as the name suggests, let you see random entries. The infor-
mation will be displayed the same way as for minientries. It might be useful to test
this function a few times to see that the entries show up and contain the information
you expected.
curl ’localhost:5000/random’

10 checking that elasticsearch is healthy
ElasticSearch provides many ways of managing your cluster and checking its status
and health, and it is recommended to read up on those13.

Here are a few calls that might be good to know about. We assume that you have a
local node running on port 9200.
Check that your cluster is doing ok:
localhost:9200/_cluster/health?pretty

The status should be green, unless you are running a cluster with 1 node only. In that
case the status should be yellow.
See the indices that you have created:
localhost:9200/_cat/indices?v

11 fresh restart
If you want to start over and remove all lexicons you’ve added so far, run the com-
mand python upload_offline.py --delete_all

This will delete all ES indices, and remove all lexicons in your configuration file
config/lexiconconf.py from the SQL database.

13 https://www.elastic.co/guide/en/elasticsearch/reference/1.5/_cluster_health.html

https://www.elastic.co/guide/en/elasticsearch/reference/1.5/_cluster_health.html

	1 About karp
	2 Input format
	3 Prerequisites
	4 Downloading the code
	5 Configurations
	6 Inputting the data to the system
	6.1 Loading data
	6.2 Adding more lexicons

	7 Reloading the data
	8 Outputting the data from the system
	9 Testing the backend
	10 Checking that ElasticSearch is healthy
	11 Fresh restart

