
A Platform for Named Entity Disambiguation

Marcus Klang, Pierre Nugues
(1) Lund University, LTH, Lund, Sweden

marcus.klang@cs.lth.se, pierre.nugues@cs.lth.se

ABSTRACT
Given a string in a text, named entity disambiguation (NED) consists in the automatic iden-
tification of the real-world reference to this string: person, organization, or country, if any.
NED usually has two steps: extract the entity mentions and if a mention corresponds to a
proper noun – a named entity –, possibly ambiguous and link it to a unique identifier. NED has
become a core step of semantic interpretation as underlined by the new motto of the search
team at Google: Things, not strings (Singhal, 2012). Most published work on named entity
disambiguation focuses on English and benefits from the wide array of resources easily available
for this language. In this paper, we introduce a new platform, NEDforia, to carry out named
entity disambiguation for multiple languages. This platform requires minimal resources: a
Wikipedia dump for the considered language and a part-of-speech tagger. It also uses Freebase
(four relations), Wikidata, and Yago2 to link and map named entity candidates across languages.
The NEDforia platform currently implements algorithms for Swedish and is easily extendible
using a dependency injection mechanism.

KEYWORDS: Named entity disambiguation, Named entity recognition, Swedish.



1 Introduction

Named entity disambiguation (NED) has become a core step of semantic interpretation as
underlined by the new motto of the search team at Google: Things, not strings (Singhal,
2012). IBM Watson (Ferrucci, 2012) is another example of semantic processing of text that
extensively uses named entity disambiguation. NED consists usually of two steps: extract
the entity mentions, usually noun phrases, and if a mention corresponds to a proper noun
– a named entity –, link it to a unique identifier. Most current published work on named
entity disambiguation focuses on English and benefits from the wide array of components and
resources available for this language. While this component availability certainly improves
the NED performance for English, a consequence is that many algorithms are not directly
implementable in many other languages because of the lack of corresponding resources.

In this paper, we describe the NEDforia platform to carry out named entity disambiguation for
multiple languages. NEDforia uses a Wikipedia dump for the considered language and collects
automatically a list of named entities from the corpus. It then extracts the links and contexts
of these entities to build disambiguation models. Given an input text, NEDforia recognizes
and disambiguates the named entities and annotate them with links to their corresponding
Wikipedia page. The NEDforia platform currently implements algorithms and models for
Swedish and is easily extendible to other languages using a dependency injection mechanism.

2 Previous Work

Named entity disambiguation has been addressed using a variety of techniques. Bunescu and
Paşca (2006) provided one of the first algorithms to solve it, based on the vector space model.
Hoffart et al. (2011)’s paper is frequently cited as the state of the art in disambiguation. It uses
an ensemble system to compute a linear combination of entity probabilities, context similarities,
and entity coherences. Cucerzan (2007), Milne and Witten (2008), and Han and Zhao (2009)
describe other algorithms for NED. In contrast to these previous works, multilingual support is
at the core of NEDforia.

3 System Architecture and Implementation

We designed NEDforia to be multilingual with minimal language-specific parts. Code reuse
is therefore essential across the languages as it makes the system more easily extendible. We
carried out the implementation using the dependency injection (Fowler, 2004) pattern that solves
the problem of hard-coded dependencies by making the code only depend on a dependency
injector. The dependency injector is constructed once and reused multiple times. The injector
can be configured to provide different concrete implementations which allow a high-level way of
switching the implementation of an abstraction. The role of the injector is to provide instances
of requested abstractions as well as concrete classes. The injector also injects the dependencies
needed to construct these instances. We used Guice (Google, 2011) as base library on top of
which we developed thread-safe constructions to be able to process indices and storage.

The system architecture consists of three major parts: A base library that serves as a foundation
for the system; a toolchain that contains all the pipeline components and uses parsers, data
storage components, document models from the base library; and a web server that serves as
front end. The base library consists of the following packages:

The annotation package contains the graph-based annotation model and well as methods to
query and find annotations. The annotation model supports comparison queries between



multiple outputs from different tools or runs via a versioning or variant mechanism
depending on use cases. The most important annotation types are: Anchor, Dependen-
cyRelation, Entity, NamedEntity, Paragraph, Section, Sentence, Span, and Token.

The core package contains the dependency injection implementation based on Guice. Every
specific language, e.g. Swedish, Danish, etc. is abstracted as a dependency injector,
which itself inherits from a root, also a dependency injector. The specific languages are
dynamically configured in the language package.

The language package contains the language-dependent processing tools that implement the
abstracted components specified in the core package.

The data package contains the data abstraction tools: Lucene helpers, BerkleyDB helpers, as
well as tools to convert CoNLL data to the document model.

The disambiguation package contains detectors and the disambiguator implementation for
the NED component.

The parser package contains the implementation that uses Sweble to parse wiki markup.

Import Pipeline. NEDforia uses Wikipedia and Wikidata as a knowledge sources to extract the
named entities. The encyclopedic text serves as a context for the disambiguation. The first step is
to import the corpora from the XML dumps available from http://dumps.wikimedia.org/
and segment them into pages.

We parse the dumps using the Woodstox (Codehaus Foundation, 2013) streaming XML parser
and we apply a type classifier that assigns a type to every page e.g. a category, template, or
article. The page types, for instance redirect, are indicated by specific tokens at the beginning
of the pages such as #REDIRECT, or #OMDIRIGERING, the latter being specific to the Swedish
version. To carry out the classification, the classifier uses language-dependent constants or
regular expressions to match these tokens.

Once the pages are extracted and categorized, we parse them, generate an AST tree for every
page, and extract text content. The parser uses Sweble and processes the resulting AST using
code based on the Koshik framework (Exner and Nugues, 2014). We consider then most of
the wiki markup tags, headers, paragraphs, lists tables, templates, links, and horizontal rules
and we prune the remaining information. Starting from a compressed multi-streamed dump,
the full implementation imports and parses the Swedish version of Wikipedia in less than 10
minutes.

Indexing and Storage. Once parsed, we use Lucene to index every page and we extract the
named entities from page titles, links, and redirects. We store these named entities as sorted
indices using Berkeley DB, where each entity is linked to the pages that contain it.

Front end. The front end is the interface to the application. It provides two entry points: one
via a toolchain command line interface (CLI) and one web interface over the HTTP protocol.
The tooolchain provides access to offline methods such as index construction and initial import.
These are tasks that could be time consuming and need to be executed offline. The web interface
provides search, a development terminal that allows users to query content within the system,
and the actual interface to the disambiguator.

http://dumps.wikimedia.org/


4 Entity Detection and Disambiguation

The entity detection module identifies all the strings representing named entities in a text. It
uses a dictionary consisting of Wikipedia titles and anchor texts mapped to candidates. We
cerated the dictionary in two steps: First through a named entity classification of the Wikipedia
pages and then through an extraction of all the titles and anchor texts from classified pages.
The named entity classification considers the page title and mappings to YAGO2 or Freebase
(persons, organizations, locations, and events). We used Wikidata to map both YAGO2 and
Freebase to the Swedish Wikipedia via English Wikipedia mappings in Wikidata in the case of
YAGO2.

To detect the entities, the system splits up the text into tokens and tries to match a sequence
of tokens to candidates using the dictionary. The sequence is determined by a named entity
tagger, combined in a hybrid system discarding words that are not defined as proper nouns in a
dictionary. As language-specific parts for Swedish, we used the Stagger POS tagger (Östling,
2013) to recognize the named entities and the Saldo dictionary. Table 1 shows an example
of the surface form dictionary, where a large number of candidates represents a high level of
ambiguity.

Input Entity description # cand. Sample output
göteborg c Railway station in Gothenburg 1 wikidata:Q54326
liseberg Amusement park in Gothenburg 4 wikidata:Q1413270
haga District in Gothenburg 30 wikidata:Q1538271

Table 1: Entries in the detection dictionary with a short description of the sought entity.

Once we have identified the named entity strings and associated them with a list of candidate
entities, we apply a disambiguation when we have more than one candidate. We implemented
a variant of Bunescu and Paşca (2006)’s method.

Given a text, the user selects the detection and disambiguation methods and writes or pastes
the text in the input box. NEDforia returns the annotated text in the form of hyperlinks or
CoNLL tables. Figure 1 shows an annotation example, where the hyperlinks will lead the user
to a Wikipedia article.

Figure 1: Example of annotation of the text: Löftet om polisförstärkningar och mera pengar till
polisområde Malmö ska enligt ett pressmeddelande från staden ha avgetts när justitieministern
Beatrice Ask och rikspolischefen Bengt Svensson för några år sedan besökte Malmö. ”Polisen i
Malmö har ännu inte fått den utlovade resursökningen och tvingas till besparingar som i sin tur
leder till minskad polisiärnärvaro, och sämre möjligheter att arbeta förebyggande”, skriver nu
Malmö stad i ett brev till Beatrice Ask.



Acknowledgments

Do not number the acknowledgment section. Do not include this section when submitting your
paper for review.

References

Bunescu, R. and Paşca, M. (2006). Using encyclopedic knowledge for named entity disam-
biguation. In Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics, pages 9–16, Trento. Association for Computational Linguistics.

Codehaus Foundation (2013). Woodstox – high-performance XML processor (version 4.2.0).
Last accessed: 2013-11-10.

Cucerzan, S. (2007). Large-scale named entity disambiguation based on wikipedia data. In
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning, pages 708–716, Prague. Association for
Computational Linguistics.

Exner, P. and Nugues, P. (2014). KOSHIK: A large-scale distributed computing framework for
nlp. In Proceedings of ICPRAM 2014 – The 3rd International Conference on Pattern Recognition
Applications and Methods, pages 464–470, Angers.

Ferrucci, D. A. (2012). Introduction to “This is Watson”. IBM Journal of Research and
Development, 56(3.4):1:1 –1:15.

Fowler, M. (2004). Inversion of control containers and the dependency injection pattern. Last
accessed: 2013-12-20.

Google (2011). Guice (version 3.0). Last accessed: 2013-11-10.

Han, X. and Zhao, J. (2009). Named entity disambiguation by leveraging wikipedia seman-
tic knowledge. In Proceedings of the 18th ACM conference on Information and knowledge
management, CIKM ’09, pages 215 – 224.

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater,
S., and Weikum, G. (2011). Robust disambiguation of named entities in text. In Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 782–792,
Edinburgh.

Milne, D. and Witten, I. H. (2008). Learning to link with wikipedia. In Proceedings of the 17th
ACM conference on Information and knowledge management, CIKM ’08, pages 509–518.

Östling, R. (2013). Stagger: an open-source part of speech tagger for Swedish. Northern
European Journal of Language Technology, 3:1–18.

Singhal, A. (2012). Introducing the knowledge graph: things, not
strings. Official Google Blog. http://googleblog.blogspot.com/2012/05/
introducing-knowledge-graph-things-not.html. Retrieved 7 November 2013.

http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

	Introduction
	Previous Work
	System Architecture and Implementation
	Entity Detection and Disambiguation

