
Under consideration for publication in Theory and Practice of Logic Programming 1

SWAPP: A Lightweight Semantic Web
Application Platform Based on Prolog

TORBJÖRN LAGER
University of Gothenburg

Sweden
(e-mail: lager@ling.gu.se)

JAN WIELEMAKER
VU University Amsterdam

The Netherlands
(e-mail: J.Wielemaker@cs.vu.nl)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We describe the design and development of a Semantic Web application platform in which
the Prolog programming language plays no less than four different roles: as a query lan-
guage, as a rule language, as a server-side web application programming language, and as
the language in which the platform as a whole is implemented. The platform is prolog-ish
also in that its RESTful web API supports the a-tuple-at-a-time retrieval of solutions to
a query typical of Prolog and in that solutions are given in the form of Prolog variable
bindings, encoded as JSON. A client may furthermore POST Prolog clauses to the service
to be stored in a scratch module associated with the current session and used in sub-
sequent queries, something which greatly increases the power of the querying facilities.
The platform thus provides a way to work with RDF and friends which is both powerful
and practical, and which also allows developers to easily define proprietary extensions to
overcome current limitations of the RDF framework.

KEYWORDS: Prolog, Semantic Web

1 Introduction

Prolog has a number of traits that distinguishes it from most other programming
languages:

• Declarativeness, inherited from its roots in logic
• Inference capabilities, inherited from its roots in theorem proving
• No separation between data and programs (reflexivity)
• The lazy a-tuple-at-a-time generation of solutions to queries

Its declarative nature and its inference capabilities places Prolog closer to the
semantic web than most other general programming languages. In this paper we

2 T. Lager and J. Wielemaker

intend to show that the closeness between data and programs as well as the a-tuple-
at-a-time generation of solutions to a query also make a lot of sense in the context
of a web application platform.

We have developed a semantic web application server featuring

• A RESTful web API for querying and managing data
• Querying of RDF graphs through Prolog queries
• Efficient a-tuple-at-a-time generation of query results
• Query results as Prolog variable bindings encoded in JSON
• Rule-based inferencing well-integrated with application code
• Rule-based ad-hoc inferencing in the context of querying
• Simulated server-push of events for the purpose of monitoring etc.

To some extent, we have been inspired by Persevere1, described as a platform
supporting rapid development of data-driven JavaScript-based rich internet appli-
cations. Persevere is a JSON storage and JavaScript application server, offering
schema-free persistent storage, a secure RESTful JSON interface for data interac-
tion, and JSONQuery/JSONPath for fast ad-hoc querying. A rich interactive server
side JavaScript environment (running on Java/Rhino) is accessible via JSON-RPC,
meaning Persevere works great for serving both thin and thick AJAX front ends.

However, Persevere is not a semantic web application platform, since it uses
JSON for storage, rather than RDF, and since no inference machinery whatsoever is
available, over and above what JavaScript provides. What makes Persevere inspiring
is its lightness and flexibility, its support for recent standards and practices such as
JSON and RESTfulness, as well as its focus on easy deployment.

Platforms that do describe themselves as semantic web application platforms,
such as the Talis Platform and Freebase(?), are typically hosted RESTful web ser-
vices which provide RDF data management, SPARQL querying and search features,
but not a general server-side application development programming language. This
only makes them suitable as storage backends to thick AJAX applications, where
the application code runs on the client.

We see many potential application areas for a lightweight Semantic Web and
AJAX application server based on Prolog. Natural language parsing web services
for example, with parsers implemented in Prolog and lexica stored in RDF. Or
expert system web applications, representing domain data in RDF. In section ??
we describe one particular use: a corpus workbench representing and storing corpus
data as well as other linguistic resources in RDF and using Prolog rules and queries
for the navigation and analysis of data.

torbjorn: Comparison with Cliopatria – explain in what sense SWAPP is more
lightweight than Cliopatria (no templating, leaves the choice of Javascript library
to the user, etc.) and what it has that Cliopatria does not have (a-tuple-at-a-time
generation of solutions, etc.) Explain also why Cliopatria is superior for the things
that it was built for.

1 http://www.persvr.org/

SWAPP: A Lightweight Semantic Web Application Platform Based on Prolog 3

2 Components

SWAPP is built from components most of which are shared with Cliopatria. We
mention the most important ones here:

• RDF (?)
The RDF support consists of parser and writers for the RDF/XML and Turtle
serializations of the RDF data-model and an RDF-storage module that is
written in C and designed to be tightly connected to Prolog. The storage
module provides fully indexed lookup, statistics to support a query optimizer,
reliable persistent storage, transaction management and full-text search.

• HTTP (?)
The HTTP server handles concurrent requests and includes authorisation and
session management.

• JSON
Provides a bidirectional generic translation between a JSON string and a
ground Prolog term.

3 Query language

Prolog provides a natural interface to schemaless semantic web data in the form
of RDF. The central predicate is rdf/3, with the obvious interface rdf(Subject,

Predicate, Object) which matches an edge in the RDF graph.
Finding a subgraph with certain properties is now easily expressed as a Prolog

conjunction, for example

rdf(Author, ex:fullName, literal(Name)), rdf(Report, ex:author, Author).

We do not use SPARQL. Instead, queries by the application logic are expressed
as Prolog goals on the raw RDF database and/or RDFS/OWL reasoning modules.
At places where the order of executing conjunctions is critical and cannot easily be
predicted by the application programmer, we use the query optimiser which rewrites
a Prolog goal involving multiple calls to rdf/3 and tests for optimal performance.
Semantic Web query languages are not used in the application logic because

• Prolog itself already provides a completely transparent and easy to use API.
As the application programmer uses Prolog anyway, Prolog syntax is a natural
choice.

• SPARQL takes the “a-set-at-a-time” approach to evaluation but we require
“a-tuple-at-a-time” evaluation.

• SPARQL lacks expressiveness to construct complex path expressions. For ex-
ample, SPARQL does not support regular expressions in query paths, there-
fore, there exists no query that gets the root of a resource given a transitive
property.

• For our purpose we often need specific RDFS/OWL reasoning support. Partial
reasoning that fulfil our requirements is easily implemented and performs well.

4 T. Lager and J. Wielemaker

4 Query API

Initially we designed and implemented, on top of HTTP, a simple protocol for
communicating with a Prolog process running on the server. We referred to it
as the first-next*-stop protocol since the exploration of a Prolog goal had to start
with a /first?query= request, be followed by zero or more /next requests and end
with a /stop request. It allowed the client to control the process in a procedural
manner, by sending commands to it. In recent years, however, the REST philosophy
has gained a lot of ground, emphasizing the importance of meaningful URIs and
the versatility of HTTP, and correctly pointing out that there usually is no need
to build special purpose protocols on top of HTTP. We took this to our hearts and
now believe that embedding Prolog in the web demands a RESTful interface and
that it would indeed be ironic if Prolog, being essentially a declarative language,
only provided a procedural web interface.

Still, the fact remains that Prolog is a relational, nondeterministic programming
language, meaning that a query may have more than one solution and frequently
very many and sometimes even an infinite number of solutions, which we can lazily
iterate over using Prolog’s backtracking mechanism. Unfortunately, this does not
mesh well with the way the web and its protocols work. We have what is often
referred to as an “impedance mismatch problem”: Prolog is relational in that a
query may map to more than one result, but HTTP is essentially functional in
that one query/request should map to exactly one result/response. Sometimes this
can be solved by using an all-solutions predicate such as findall/3, but this only
works for a finite number of solutions and only if they are not too many. Besides, we
may prefer to generate the solutions one-by-one, sometimes because it is cheaper in
terms of memory requirements (on both server and client), and sometimes because
we want to decide, after having seen the first couple of solutions, whether we want
to see more. If not, we may have saved ourselves some time and some CPU cycles.

We choose instead to work with a virtual index to the solutions that a query
has, without actually generating the solutions. Each solution in the sequence of
n solutions to a query receives an integer index in the range 1..n. This makes a
query for the ith solution of a goal functional and deterministic, and thus solves
the impedance mismatch problem.

Presenting this as a RESTful API is of course trivial.

Method URI Pattern Semantics

GET /swapp/session/db?query=q&i=i Retrieve the ith solution to the query q

URIs can now be seen as declarative expressions rather than commands, and
each solution to a query has become a resource (in REST parlance), with the
consequence that it is uniquely addressable by a URI, which in turn means that
it may for example be bookmarked (using the bookmarking mechanism available in
browsers), something which certainly isn’t possible with URIs such as /next.

SWAPP: A Lightweight Semantic Web Application Platform Based on Prolog 5

5 Caching

Implementing the semantics of this API:s is not difficult. The problem is getting
an implementation to behave efficiently, in particular for certain repeated requests.
Consider the following two requests:

GET /swapp/session/db?query=rdf(S,p,O)&i=1

GET /swapp/session/db?query=rdf(S,p,O)&i=2

In a naive implementation, work that GET

/swapp/session/db?query=rdf(S,p,O)&i=2 has to perform will have to re-
peat the work performed by GET /swapp/session/db?query= rdf(S,p,O)&i=1.
To deal with this, we have developed a technique to preserve the Prolog state
(stack, choicepoints, variable bindings) between requests by creating a thread that
is associated to the HTTP session, running the state-full computation there, and
sending messages back and forth between the HTTP handlers and the session
thread to communicate queries and results.

Under the assumption that we only want to manage one Prolog state (per client
session) at a time, this raises the problem of when to take advantage of the preserved
Prolog state, and when to reset it (by killing the thread in which the query is
running). Intuitively, the Prolog state needs to be reset if the query changes, or if
the request is for a solution earlier in the sequence of solutions to the query, but
that it otherwise may be of use. For example, if the two GET requests above are
followed by

GET /swapp/session/db?query=rdf(S,p,O)&i=3

then it is indeed the case that the Prolog state can be used, and that doing so
will save a few logical inferences. But if they are followed by a request such as

GET /swapp/session/db?query=rdf(S,p,O)&i=1

or by a request with a different query

GET /swapp/session/db?query=rdf(S,q,O)&i=1

then we should reset the Prolog state before attempting to serve them. We can
wrap this up as a rule:

IF the URI of the current request has the form
/swapp/session/db?query=q1&i=i1
AND there exists a previous request R (in the current session)
AND the URI of R has the form /swapp/session/db?query=q0&i=i0
AND q1 = q0

AND i1 > i0
THEN the current Prolog state is used
ELSE the current Prolog state is reset before the current request is dealt with
ENDIF

6 T. Lager and J. Wielemaker

Note that the Prolog state plays the role of a kind of cache, and that the act
of resetting the Prolog state is equivalent to the act of flushing this cache. The
comparison to a cache seems natural also in light of the fact that all that is does is
to (under certain conditions) increase the efficiency of the server. In particular, it
does not change the semantics of the API.

To take care of the problem of server threads “just hanging there” indefinitely,
wasting valuable resources, we allow the cache to expire after a set number of
seconds without activity (again by killing the thread in which the query is running).
For example, if the set number of second is 60, then for the case of

GET /swapp/session/db?query=rdf(S,p,O)&i=1

... 61 seconds passing....

GET /swapp/session/db?query=rdf(S,p,O)&i=2

the Prolog state would not be preserved in between the requests. Note that the
semantics is preserved though.

6 Output format

There are a number of formats in which solutions to a query could be returned:
JSON, XML and Prolog, to mention the most obvious ones. A general web service
framework should probably allow the user to select output format on a query-
by-query basis (e.g. by specifying a request parameter) but our implemention is
currently only able to return solutions encoded as JSON.

We convert any Prolog binding into a JSON term. Prolog lists are treated in a
special way. Also, JSON terms are not converted. Here is the mapping:

• Variable → {"type":"var", "name":<string>}
• Atom →{"type":"atom", "value":<string>}
• Integer → {"type":"integer", "value":<integer>}
• Float → {"type":"float", "value":<float>}
• List → JSON array
• Compound → {"type":"compound", "fun":<string>, "args":<array>}

torbjorn: Here we need an example.

7 Update API

Through library http/http session SWI-Prolog supports the creation and man-
agement of sessions based on HTTP cookies. A session provides a session ID, a
unique identifier known by the server as well as the client that initialized the ses-
sion. When a session starts, SWAPP creates a module named by the session ID, and
when the session ends, it is destroyed. This session database module thus serves as a
scratch area, for the client to store any Prolog clauses deemed useful for subsequent
querying or for other kinds of processing. The API is simple:

SWAPP: A Lightweight Semantic Web Application Platform Based on Prolog 7

Method URI Pattern Semantics

POST /update Add a set of clauses to the session database

torbjorn: PUT and DELETE methods? Safetey?

8 Working with the APIs

A Prolog query by itself is not more (nor less) expressive than a SPARQL query.
However, by combining the querying ability with the ability to dynamically update
the session database we end up with something quite powerful. Here, for example,
is how we could compute the transitive closure of the p property. First we POST a
definition

POST /update

ptrans(S,O) :- rdf(S, p, O).

ptrans(S,O) :- rdf(S, p, X), ptrans(X, O).

and then we GET the first solution

GET /swapp/session/db?query=ptrans(S,O)&i=1

and the second solution

GET /swapp/session/db?query=ptrans(S,O)&i=2

or all of them in a batch if we prefer:

GET /swapp/session/db?query=findall(ptrans(S, O), ptrans(S, O), PTs)&i=1

We could also update the session database with a Prolog procedure doing some-
thing interesting (not necessarily involving querying data), and call this procedure
remotely from the client by sending a GET request. This is where Persevere makes
a distinction between retrieving data through a standard JSON HTTP/REST web
interface on the one hand, and the remote execution of JavaScript methods on the
server through JSON-RPC on the other. Since Prolog does not distinguish data
from programs (i.e. clauses are both data and programs), there is no need for an
Remote Procedure Call (RPC) interface. The HTTP/REST web interface can be
used for both the retrieval of data or for the invocation of procedures, either static
procedures or procedures in the dynamic session database.

9 The API Explorers

Our Prolog-based semantic web service, like any HTTP/REST-based web service,
may be tried and tested using command line tools such as cURL2 or browser ex-
tensions such as the Poster3 Firefox plugin.

2 http://curl.haxx.se/
3 http://code.google.com/p/poster-extension/

8 T. Lager and J. Wielemaker

Fig. 1. The SessionDB API Explorer

10 Implementation details

torbjorn: This may not be needed.

11 Use case: a corpus tool

Our Prolog-based semantic web service, like any HTTP/REST-based web service,
may be tried and tested using command line tools such as cURL4 or browser ex-
tensions such as the Poster5 Firefox plugin.

Building a web application in a combination of HTML, CSS and JavaScript is
straightforward. The GUI to a corpus tool written by the first author is shown in ??.
Note the Previous button that allows a user to inspect the previous solution/match,
albeit often significantly slower than looking at the next solution/match since the
Prolog state caching does not work when moving “backwards”.

It is important to note that on the client side, nothing is new or in any way
peculiar to the use of Prolog. The client side is a just an ordinary AJAX application
that can be written by any programmer familiar with the languages and techniques
involved.

4 http://curl.haxx.se/
5 http://code.google.com/p/poster-extension/

SWAPP: A Lightweight Semantic Web Application Platform Based on Prolog 9

12 Discussion

SWAPP is all about Prolog in, JSON out, and all about contributing to the “Logic
Programmable Web”.

Prolog stands for “programming in logic” and thus WebProlog stands for “web
programming in logic”.

It is time for Prolog programmers to learn JavaScript and for AJAX programmers
to learn Prolog. Very few Prolog programs need a front end which isn’t browser
based, and AJAX applications needs to be smarter.

torbjorn: To be written.

Acknowledgements

	Introduction
	Components
	Query language
	Query API
	Caching
	Output format
	Update API
	Working with the APIs
	Implementation details
	Use case: a corpus tool
	Discussion

