
Cloud Logic Programming for Integrating
Language Technology Resources

Markus Forsberg and Torbjörn Lager
Centre for Language Technology, University of Gothenburg

Abstract

The main goal of the CLT Cloud project is to equip lexica,
morphological processors, parsers and other software
components developed within CLT (Centre of Language
Technology) with so called web API:s, thus making them
available on the Internet in the form of web services. Our
proof-of-concept implementation deals with the task of
composing and aggregating existing web services into
new web services, and with the problem of doing this in a
declarative and flexible manner that encourages creative
exploration and rapid prototyping of LT applications.
Requirements such as declarativity, compositionality, security
and a principled approach to the handling of ambiguity made
us choose a declarative subset of Prolog for this purpose.

Prolog

Prolog has a number of traits that distinguishes it from most
other programming languages:
I Declarativeness, inherited from its roots in logic
I Inference capabilities, inherited from its roots in theorem

proving
I Reflexivity: no separation between data and programs
I Nondeterminism: a lazy a-tuple-at-a-time generation of

solutions to queries, binding variables to different values on
backtracking

A RESTful Prolog API

I Web services in the CLT Cloud follows the REST
(Representational State Transfer) architectural principles.

I A client may PUT, POST or DELETE Prolog programs, and
GET may be used for querying.

Is this safe?

I We carefully inspect queries and programs before allowing
them to be executed on the server machine. Prolog’s
reflexivity makes this relatively easy.

Impedance mismatch between HTTP GET and Prolog

I Prolog is relational, but HTTP GET is essentially functional.
I To deal with the mismatch we use a virtual index to identify

solutions, which makes a request for the ith solution to a
query functional and deterministic.

Is this efficient and does it scale?

I To avoid regenerating solutions 0-i when asking for solution
i+1, we preserve the Prolog state (stack, choice points,
variable bindings) between requests by creating a thread that
is associated to the HTTP session, run the state-full
computation there, and send messages back and forth
between the HTTP handlers and the session thread to
communicate queries and results (Wielemaker et al., 2011).

I We have tried our approach with texts containing hundreds of
thousands of words, making Prolog return analyses to the
client sentence-by-sentence.

From client to server and back to client: A tiny example

Suppose we want to part-of-speech tag Tom runs from inside a browser
client using the resources provided by the CLT Cloud. We start by uploading
the data to the server, using the browser’s XMLHttpRequest API like so:

var xhr = new XMLHttpRequest();
xhr.open("PUT", "cloud.clt.gu.se");
xhr.send("text(’Tom runs’).");

The data is stored in a scratch module associated with the current session
and used in subsequent queries. Triggered by the JSON response to the
PUT, we may now send the query that will part-of-speech tag the data:

var q="text(Text),tokens(Text,Tokens),tags(Tokens,Tags)";
xhr.open("GET","cloud.clt.gu.se?query="+q+"&cursor=0");
xhr.send(null);

Here, q is the Prolog query that we want to use, and the value of cursor
points to the first solution in the zero-based virtual index of solutions.

On the server side, the query is run in the scratch module containing the data
that was uploaded in the previous PUT request. Note that answering the
query usually involves making calls to non-Prolog processes in the cloud.

If the query is successful, the server answers with a JSON object containing
fields corresponding to the query’s logic variables:

{"success": true,
"message":"yes",
"bindings":[

{"Text":"Tom runs",
"Tokens":["Tom", "runs"],
"Tags":[{"token":"Tom", "pos":"NNP"},

{"token":"runs", "pos":"VBZ"}]}]
}

Should we want to retrieve the next solution to the query, we repeat the GET
request, but this time with cursor set to 1. (In this example, this will
probably return a JSON structure signifying failure.)

On the client side, we could for example use a combination of HTML, CSS
and JavaScript to present the JSON in a more user-friendly table-based
format. This is what we do in our browser-based CLT Cloud API Explorer:

References

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager (2011)
SWI-Prolog. Theory and Practice of Logic Programming: Special Issue on
Prolog Systems, 12:67-96.

Centre for Language Technology, University of Gothenburg, Sweden


